Expanding Hall-Littlewood and related polynomials as sums over Yamanouchi words
نویسنده
چکیده
This paper uses the theory of dual equivalence graphs to give explicit Schur expansions to several families of symmetric functions. We begin by giving a combinatorial definition of the modified Macdonald polynomials and modified Hall-Littlewood polynomials indexed by any diagram δ ⊂ Z × Z, written as H̃δ(X; q, t) and P̃δ(X; t), respectively. We then give an explicit Schur expansion of P̃δ(X; t) as a sum over a subset of the Yamanouchi words, as opposed to the expansion using the charge statistic given in 1978 by Lascoux and Schüztenberger. We further define the symmetric function Rγ,δ(X) as a refinement of P̃δ and similarly describe its Schur expansion. We then analysize Rγ,δ(X) to determine the leading term of its Schur expansion. To gain these results, we associate each Macdonald polynomial with a signed colored graph Hδ . In the case where a subgraph of Hδ is a dual equivalence graph, we provide the Schur expansion of its associated symmetric function, yielding several corollaries. Résumé. Ce document utilise la théorie des graphes double équivalence pour donner expansions de Schur explicites à plusieurs familles de fonctions symétriques. Nous commençons par donner une définition combinatoire des polynômes de Macdonald modifiés et polynômes de Hall-Littlewood modifiés indexés par tout schèma δ ⊂ Z × Z, écrit H̃δ(X, q, t) et P̃δ(X, t), respectivement. Nous donnons ensuite une expansion de Schur explicite de P̃δ(X, t) comme une somme sur un sous-ensemble des mots Yamanouchi, plutôt que l’expansion en utilisant la statistique de charge donnée en 1978 par Lascoux et Schüztenberger . Nous définissons davantage la fonction symétrique Rγ,δ(X) comme un raffinement de P̃δ et décrire même son expansion de Schur . Nous analysons puis Rγ,δ(X) afin de dèterminer le premier terme de son expansion de Schur. pour obtenir ces résultats, nous associons chaque polynôme Macdonald avec un graphique coloré signé Hδ . En le cas où un sous-graphe de Hδ est un graphe dual équivalence, nous fournissons l’expansion de Schur de sa fonction symétrique associée, ce qui donne plusieurs corollaires.
منابع مشابه
On the Schur Expansion of Hall-Littlewood and Related Polynomials via Yamanouchi Words
This paper uses the theory of dual equivalence graphs to give explicit Schur expansions for several families of symmetric functions. We begin by giving a combinatorial definition of the modified Macdonald polynomials and modified HallLittlewood polynomials indexed by any diagram δ ⊂ Z × Z, written as H̃δ(X; q, t) and H̃δ(X; 0, t), respectively. We then give an explicit Schur expansion of H̃δ(X; 0,...
متن کاملCombinatorial Formula for Modified Hall-Littlewood Polynomials
We obtain new combinatorial formulae for modified Hall–Littlewood polynomials, for matrix elements of the transition matrix between the elementary symmetric polynomials and Hall-Littlewood’s ones, and for the number of rational points over the finite field of unipotent partial flag variety. The definitions and examples of generalized mahonian statistic on the set of transport matrices and dual ...
متن کاملAdding ± 1 to the argument of an Hall - Littlewood polynomial
Shifting by ±1 powers sums: pi → pi± 1 induces a transformation on symmetric functions that we detail in the case of Hall-Littlewood polynomials. By iteration, this gives a description of these polynomials in terms of plane partitions, as well as some generating functions. We recover in particular an identity of Warnaar related to RogersRamanujan identities. ’ ooo oo o ’ ooo oo o ’ ooo oo o ’ o...
متن کاملParabolic Kazhdan-Lusztig polynomials, plethysm and gereralized Hall-Littlewood functions for classical types
We use power sums plethysm operators to introduce H functions which interpolate between the Weyl characters and the Hall-Littlewood functions Q corresponding to classical Lie groups. The coefficients of these functions on the basis of Weyl characters are parabolic Kazhdan-Lusztig polynomials and thus, are nonnegative. We prove that they can be regarded as quantizations of branching coefficients...
متن کاملYamanouchi Toppling -extended Abstract
We study an extension of the chip-firing game. A given set of admissible moves, called Yamanouchi moves, allows the player to pass from a starting configuration α to a further configuration β. This can be encoded via an action of a certain group, the toppling group, associated with each connected graph. This action gives rise to a generalization of Hall-Littlewood symmetric polynomials and a ne...
متن کامل